
Combinatorial Networks
Week 4, April 2

Sperner’s Theorem

• Definition. Let F be a family of subsets of [n] (that is F ⊂ 2[n]). We call F an independent
system of subsets of [n], if for any two distinct A,B ∈ F , we have A 6⊂ B and B 6⊂ A.

In other words, there is NO containment relationship between two sets in an independent
system.

• Definition. (i) A chain of subsets of [n] is a sequence of distinct sets A1, A2, ..., Ak ⊂ [n]
such that A1 ⊂ A2 ⊂ . . . ⊂ Ak.
(ii) A maximal chain is a chain with the property that no other set can be inserted in the
chain.

• Fact. Any maximal chain C must like look as following:

C : ∅ ⊂ {x1} ⊂ {x1, x2} ⊂ {x1, x2, x3} ⊂ . . . ⊂ {x1, x2, ..., xn} := [n].

So it contains exactly one subset of [n] of each of the possible sizes.

• Fact. There are n! maximal chains of subsets of [n].

This is because: each maximal chain C (as above) defines a unique permutation π : [n]→ [n]
by π(i) = xi. And there are n! permutations.

• Sperner’s Theorem. For any independent system F of subsets of [n], we have |F| ≤
(
n
bn
2
c
)
.

• First, we see this upper bound is tight, as the following independent system F containing
exactly

(
n
bn
2
c
)

subsets: F =
{

all subsets of size bn2 c} (Why is it an independent system?)

• Proof of Sperner’s Theorem. We will use double-counting in this proof. Given an
independent system F , we consider the set of all ordered pairs (C, A) such that

(i). C is a maximal chain of subsets of [n], and

(ii). A ∈ C ∩ F is a subset of [n].

Key Observation. Any (maximal) chain can only contain at most one subset in common
with any independent system! This is because that any two sets from chain will bring in
the containment relationship.

By the above observation, any maximal chain C contains at most one set A ∈ F . Therefore,

# of such pairs (C, A) =
∑
C

(# of sets A ∈ F contained in maximal chain C) ≤
∑
C

1 = n!.

On the other hand,

# of such pairs (C, A) =
∑
A∈F

(# of maximal chains C containing A).
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Let A = {x1, ..., xk} ∈ F . Then any maximal chain C containing A must look like:

∅ ⊂ {·} ⊂ {·, ·} ⊂ · · · ⊂ A ⊂ · · · ⊂ [n].

There are k! ways to form the sets between ∅ and A and there are (n − k)! ways to from
the sets between A and [n]. Therefore, the total number of maximal chains containing A is
k!(n− k)! = |A|!(n− |A|)!. Combining the above items, we get

n! ≥ # of such pairs (C, A) =
∑
A∈F

(# of maximal chains C containing A) =
∑
A∈F
|A|!(n−|A|)!.

Recall that
(
n
bn
2
c
)

achieves the maximum over all binomial coefficients
(
n
k

)
. Therefore,

1 ≥
∑
A∈F

|A|!(n− |A|)!
n!

=
∑
A∈F

1(
n
|A|
) ≥∑

A∈F

1(
n
bn
2
c
) =

|F|(
n
bn
2
c
) ,

which implies that F| ≤
(
n
bn
2
c
)
. This completes the proof.

• Next, we consider a nice application of Sperner’s Theorem.

Littlewood-Offord Problem. Fix a vector ~a := (a1, a2, ..., an) with each |ai| ≥ 1. Let
S = S(~a) be the set of vectors ~ε := (ε1, ε2, ..., εn) with each εi = 1 or −1 such that

−1 < ~a · ~ε < 1,

where ~a · ~ε =
∑n

i=1 aiεi. Then we always have that |S| ≤
(
n
bn
2
c
)
.

• Proof. We will reduce this problem to Sperner’s theorem. For any ~ε ∈ S, define

A~ε := {i ∈ [n] : aiεi > 1}.

Then, let F := {A~ε : ~ε ∈ S}. Therefore |F| = |S|; also notice that F is a family of subsets
of [n]. So it suffices to prove that F is an independent system.

To see this, suppose for a contradiction that there are two sets A1, A2 ∈ F such that
A1 ( A2. Let ~εi be the corresponding vector in S for Ai. By definition,

~a · ~ε1 =
∑
i∈A1

aiεi +
∑
j /∈A1

ajεj =
∑
i∈A1

|ai| −
∑
j /∈A1

|aj | = 2 ·
∑
i∈A1

|ai| −
n∑
k=1

|ak| ∈ (−1, 1);

Similarly, we have

~a · ~ε2 = 2 ·
∑
i∈A2

|ai| −
n∑
k=1

|ak| ∈ (−1, 1).

Note that A1 ⊆ A2, so

~a · ~ε2 − ~a · ~ε1 = 2 ·
∑

i∈A2−A1

|ai| ≥ 2.

But as each ~a ·~εi ∈ (−1, 1), we also have that ~a ·~ε2 − ~a ·~ε1 < 2. This contradiction finishes
the proof that F indeed is an independent system.

Then by Sperner’s theorem, |S| = |F| ≤
(
n
bn
2
c
)
.
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• Exercise. Find a vector ~a in Littlewood-Offord Problem which achieves the upper bound.

Forbidden 4-cycles

• Sperner’s theorem is a classic problem in extremal set theory.

We now consider a typical problem in extremal graph theory: What is the maximal possible
number of edges in an n-vertex graph G that does not contain a given “forbidden graph”
F as subgraph of G?

• Choosing different forbidden graphs F (of course) will result in different answers to the
above question. We look at two easy examples.

(i). Let F be an edge. If graph G contains no copy of F , then of course graph G has no
edge at all. So the answer is 0.

(ii). Let F be a path with two edges. If graph G contains no copy of F , then any vertex
of G has at most 1 incident edge. This means that the set of edges of G forms a matching!
Thus, the answer (maximal number of edges) is n/2.

• This lecture, we focus on the case when the forbidden graph F is a cycle with four edges
(or four-cycle for short). Notice that a four-cycle is exactly the complete bipartite graph
K2,2!

• We will need the following elementary but useful inequality.

Cauchy-Schwarz inequality. For any reals x1, x2, ..., xn and y1, y2, ..., yn, we have

n∑
i=1

xiyi ≤

√√√√ n∑
i=1

x2i ·

√√√√ n∑
i=1

y2i .

Proof. Consider the inequality
∑n

i=1

∑n
j=1(xiyj − xjyi)2 ≥ 0, which leads to

2

(∑
i

x2i

)
·

(∑
i

y2i

)
=
∑
i

∑
j

(x2i y
2
j + x2jy

2
i ) ≥ 2

∑
i

∑
j

(xiyi)(xjyj) = 2

(∑
i

xiyi

)2

.

After square-root, we get the desired inequality.

• Theorem. If an n-vertex graph G = (V,E) contains no copy of K2,2 as its subgraph, then
it has at most 1

2

(
n3/2 + n

)
edges.

• Proof. We use use double-counting again.

Let S be the set containing all 3-tuples ({u1, u2}, v), where three vertices u1, u2, v form a
path u1 − v − u2 of length 2 in graph G, with v as the middle vertex.

For any two vertices u1, u2 of G, there is at most one vertex v such that ({u1, u2}, v) ∈ S.
To see this, suppose there are two paths u1− v− u2 and u1− v′− u2, then these two paths
form a four-cycle K2,2 of G, which is forbidden. Therefore, we get |S| ≤

(
n
2

)
.
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Also notice that for any two neighbors u,w of v, they form a path u − v − w in G, so
({u,w}, v) ∈ S. This shows that |S| =

∑
v∈V

(
d(v)
2

)
, where d(v) is the degree of v (i.e. the

number of neighbors of v).

Thus, if using d1, d2, ..., dn to express the degrees of G, we get(
n

2

)
≥ |S| =

n∑
i=1

(
di
2

)
≥
∑
i

(di − 1)2

2
.

Cauchy-Schwarz inequality (letting xi = di − 1 and yi = 1), together with Hands-shirking
lemma, show that √√√√ n∑

i=1

(di − 1)2 ·
√
n ≥

n∑
i=1

(di − 1) = 2|E| − n.

Therefore,

2|E| ≤ n+
√
n ·

√√√√ n∑
i=1

(di − 1)2 ≤ n+
√
n ·

√
2

(
n

2

)
≤ n+ n3/2,

which completes the proof of theorem.

Forbidden triangles

• We have determined the maximal number of edges in n-vertex graphs with no copy of K2,2

in last Lecture. Here we study the maximal number of edges in graphs with no copy of
triangle. A triangle is a complete graph on three vertices, i.e. the K3.

• Definition. Let T (n) be the maximal number of edges in an n-vertex graph which doesn’t
contain K3 as a subgraph.

• We first consider T (n) for small values of n: T (1) = 0, T (2) = 1 which is achieved by an
edge, T (3) = 2 which is achieved by a path of length 2, and T (4) = 4 which is achieved by
K2,2. Notice that all above T (n) are achieved by some complete bipartite graphs.

• Theorem 1. For any integer n ≥ 1, T (n) = bn2

4 c.
(Note the floor bxc of real number x denotes the largest integer which is less than or equal
to x.)

• Proof of Theorem 1. We first show T (n) ≥ bn2

4 c. Consider the complete bipartite
graph Kbn

2
c,dn

2
e, which has n vertices and contains no copy of K3. As Kbn

2
c,dn

2
e has exactly

bn2 c · d
n
2 e = bn2

4 c many edges, we see that the maximum T (n) is at least bn2

4 c.

For the proof of T (n) ≤ bn2

4 c, as T (n) is always an integer, it suffices to show that T (n) ≤ n2

4 .
In follows, we prove by induction on n that any n-vertex graph G with no copy of K3 has
at most n2

4 edges. Base cases have been verified when n = 1, 2, 3, 4.

Assume that it holds for all integers smaller than n. Consider any graph G = (V,E) with
|V | = n and with no copy of K3. Fix an edge e0 = (x, y) ∈ E and define two edge sets:

Ex = {all edges of G incident to x except e0}, Ey = {all edges of G incident to y except e0}.
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Let G′ be a graph obtained from G by deleting vertices x, y; that is G′ = (V ′, E′), where

V ′ := V − {x, y} and E′ := E − Ex ∪ Ey ∪ {e0}.

(i) Since G′ has (n − 2) vertices and again has no copy of K3, by induction we get the

number of edges in G′ is |E′| ≤ (n−2)2
4 .

(ii) Note that G has no K3, so x, y have no common neighbor in G, which means that
NG(x) ∩NG(y) = ∅ and thus |NG(x)|+ |NG(y)| = |NG(x) ∪NG(y)| ≤ n.

Combining the above properties, together with |Ex| = |NG(x)| − 1 and |Ey| = |NG(y)| − 1,
we get that the number of edges of G is

|E| = |E′|+ |Ex|+ |Ey|+ 1 = |E′|+ |NG(x)|+ |NG(y)| − 1 ≤ (n− 2)2

4
+ n− 1 =

n2

4
.

• Definition. We say an n-vertex graph G is extremal, if it contains no copy of K3 and has
exactly bn2

4 c edges.

• Theorem 2. For any integer n ≥ 1, there exists a unique extremal graph on n vertices,
which is the complete bipartite graph Kbn

2
c,dn

2
e.

Theorem 2 tells us that there is only one graph achieving the exact maximal number. Its
proof is similar to Theorem 1’s. Here, we will stress the arguments we need for the structure
of extremal graphs (as others are the same as in Theorem 1).

• Proof of Theorem 2. We prove this by induction on n. The basic case is trivial, as when
n = 2, the extremal graph K1,1 is unique.

We assume that the statement holds for any smaller integer than n. Consider any extremal
graph G = (V,E) (with no K3 and |E| = bn2

4 c). We will show that G must be Kbn
2
c,dn

2
e,

thereby implying the uniqueness as well.

Just similarly to the proof of Theorem 1, we fix an edge e0 = (x, y) ∈ E and define edge sets
Ex, Ey, E

′ as before. And let G′ = (V ′, E′), where V ′ = V −{x, y}. Again, we conclude that

|NG(x)|+|NG(y)| ≤ n (as G has no triangle). And by Theorem 1, |E′| ≤ T (n−2) = b (n−2)
2

4 c
(as G′ has no K3). Therefore,

bn
2

4
c = |E| = |E′|+ |Ex|+ |Ey|+ 1 = |E′|+ |NG(x)|+ |NG(y)| − 1 ≤ b(n− 2)2

4
c+ n− 1.

But bn2

4 c = b (n−2)
2

4 c + n − 1 is an identity, which implies that all inequalities used are

equalities: |NG(x)|+ |NG(y)| = n and |E′| = b (n−2)
2

4 c.
Note that G′ now is an extremal graph on n − 2 vertices. By induction, G′ must be
the complete bipartite graph Kbn−2

2
c,dn−2

2
e; let us say G′ has a bipartition A′, B′, where

|A′| = bn−22 c and |B′| = dn−22 e.
Observation: NG(x) and NG(y) are two independent set (namely having no edges at all).
To see this, suppose NG(x) has an edge (u,w), then x, u, w form a K3 in G, a contradiction.

This observation implies that NG(x)− {y} ⊂ A′ or B′; similarly, NG(y)− {x} ⊂ A′ or B′.
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Since |NG(x)− {y}|+ |NG(y)− {x}| = |NG(x)|+ |NG(y)| − 2 = n− 2, |A′|+ |B′| = n− 2
and NG(x) ∩ NG(y) = ∅, we must have that either NG(x) − {y} = A′, NG(y) − {x} = B′

or NG(x) − {y} = B′, NG(y) − {x} = A′. By symmetric, assume the latter case occur, by
letting A := A′ ∪ {x} and B := B′ ∪ {y}, we see now that graph G is a complete bipartite
graph Kbn

2
c,dn

2
e with bipartite A,B. Here |A| = |A′|+ 1 = bn2 c and |B| = |B′|+ 1 = dn2 e.
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